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Abstract 
 
In this paper, a new approach that uses the rate of change of the angular momentum about the center of mass (COM) to improve the 

balance of a humanoid robot is proposed. This approach is motivated by how humans balance themselves when standing, walking, and 
running by making use of their upper body and swinging legs. Human movements such as lunging forward or backward and rotating 
arms make use of angular momentum to maintain balance. As the external perturbation increases, a human instinctively decides when 
and where to take a step to avoid a fall. In the same manner, a humanoid robot subjected to an external perturbation can determine 
whether to remain standing or to take a step with a swinging leg to maintain balance using RHVR conditions obtained from the proposed 
linear inverted dumbbell model. The rotation of a dumbbell model with mass inertia is an easy expression of the angular momentum of 
an upper body, arms, and legs. A zero-moment point (ZMP) outside the support polygon indicates an unbalanced gait and cannot repre-
sent a physical point related to the sole of the robot foot, which is defined as pseudo-ZMP (PZMP) in this paper. PZMP located outside 
the support area provides useful information for balancing the gait. PZMP from the foot edge provides a measure of the unbalanced mo-
ment that tends to rotate the humanoid robot around the supporting foot and causes it to fall. It is shown that PZMP is determined by the 
Gauss’s principle within mechanical constraints of the rate of change of angular momentum about COM. In fact, the actual angular ac-
celeration about COM is determined by the Gauss’s principle. Additionally, RHVRs is defined, that is, viability regions to keep the bal-
ance that indicate the essential range of stability implemented to a real system. RHVRs are divided into the real ZMP (RZMP), PZMP and 
stepping PZMP (SPZMP). Hence, the regions of RHVR and the actual angular acceleration about COM determine which of the three 
control strategies is used. 

 
Keywords: Linear inverted dumbbell model; Receding horizon viability radius; Pseudo-zmp; Gauss’s principle 
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
1. Introduction 

Humans are capable of performing numerous dynamical 
movements in a wide variety of complex and novel environ-
ments while robustly rejecting a large spectrum of distur-
bances. Human movements such as a forward lunge and rapid 
arm rotations make use of angular momentum to maintain 
overall balance. Many researchers have studied humanoid 
robots as a way to understand humans. It is difficult to use a 
general approach for studying the stability of a humanoid ro-
bot under an external disturbance. To deal with small distur-
bances, it may be sufficient for a robot to simply behave as an 

inverted pendulum with a compensating torque at the ankle 
[1]. As the disturbance increases, the robot must use more of 
its upper body and swing it legs. Bending of the hips or swing-
ing of the legs compensates additional torques due to larger 
disturbances. If the disturbance is too large, the robot can 
avoid falling only by taking a step. However, simplified mod-
els of a humanoid robot, such as the linear inverted pendulum 
model (LIPM) developed by Kajita [2], do not consider rota-
tional inertia, and therefore, they cannot capture this behavior. 
The LIPM is linearized about the vertical and constrained to a 
horizontal plane. An extension of the LIPM is the linear in-
verted pendulum plus flywheel model developed by Pratt et al. 
[3]. This model achieves control and stability of a humanoid 
robot by simply using meaningful velocity formulations. The 
velocity-based formulations are used to determine the capture 
region into which the humanoid robot must step to avoid fal-
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ling. Occasionally, the capture region may be outside the ro-
bot’s range of motion and it must therefore take more than one 
step to balance itself. A disadvantage of this model is that it 
does not consider the effect of ankle torque. However, it ap-
pears that the angular momenta about the center of pressure 
(COP) and center of mass (COM) are important factors that 
must be controlled.   

The rotation equilibrium of the foot is an important criterion 
for the evaluation and control of the gait and postural stability 
in a humanoid robot. Goswami [4] proposed the foot rotation 
indicator (FRI), which indicates the unbalanced torque acting 
only during the single-support phase of a humanoid robot. He also 
proposed the zero rate of change in angular momentum 
(ZRAM) point [5], which is a useful criterion for the analysis 
and control of the balance of a humanoid robot in very general 
situations. Unlike the FRI, the ZRAM point is not defined on 
the basis of physical rotation of the foot and is valid during 
both the single- and double-support phases. However, ZRAM 
cannot be applied in a practical system due to theoretically 
physical quantity without kinematic consideration of a hu-
manoid robot. Popovic et al. [6] proposed the use of the zero-
spin angular momentum instead of the COM torque. If the 
spin angular momentum motivated by biomechanical findings 
is not precisely regulated, the actual COP will obviously differ 
from the zero-spin COP (ZSCOP). Assuming the ground reac-
tion force (GRF) to be sufficiently large, the zero-spin COP 
moves outside the foot support polygon. When there is a large 
and rapid turning motion such as a nonzero vertical torque, the 
ZSCOP shifts from the actual one. Essentially, however, the 
ZSCOP, ZRAM, and centroidal moment pivot (CMP) all co-
incide. However, they cannot be practically applied to a hu-
manoid robot under external perturbation.  

Obviously, a loss of balance implies that the rate of change 
of angular momentum about the COM is nonzero. When a 
humanoid robot has an overall nonzero angular momentum, it 
tips, and this results in either spinning or falling. Even a hu-
manoid robot having a constant nonzero angular momentum 
can fall. If the resultant external moment on the humanoid 
robot is zero, then the overall rate of change of angular mo-
mentum is zero and overall rotational stability or equilibrium 
is achieved. However, it is practically difficult to achieve this 
state since it is infeasible to make the rate of change of angular 
momentum about the COM zero.  

Thus, we first describe how to minimize the rate of change 
of angular momentum about the COM within mechanical 
constraints and then present viability regions to achieve bal-
ancing posture strategies of a humanoid robot under various 
external perturbations.  

The zero-moment point (ZMP) coincides with the COP 
when within the support polygon (called the real ZMP or 
RZMP); however, when it is outside the support polygon, it is 
called the pseudo-ZMP (PZMP), which is obtained to mini-
mize the rate of change of angular momentum about the COM. 
However, it is practically difficult to measure the rate of 
change of angular momentum about the COM. Nonetheless, 

determining the same is very important for achieving stability 
of a humanoid robot.  

We describe how to solve this problem using the Gauss’s 
principle, which expresses an extreme property of the real 
motion of a system in the class of admissible motions and 
defines the viability regions as the receding horizon viability 
radius (RHVR), which indicates the essential range of the 
stability implemented in a real system. The RHVRs are di-
vided into the real ZMP (RZMP), PZMP and stepping PZMP 
(SPZMP).  

In section 2, a linear inverted dumbbell model (LIDM) that 
approximates the rate of change of angular momentum about 
the COM is described. This model has the advantage of ap-
proximating the behavior of the upper body or swinging leg in 
a humanoid robot. In section 3, the PZMP is shown as a more 
practical criterion for the stability of a humanoid robot as 
compared to other criteria such as the COP, FRI, and CMP. 
Section 4 describes how to obtain the PZMP. The RHVR, 
which is considered for three different cases, is summarized in 
section 5, and the conclusions are presented in section 6. 
 

2. Linear inverted dumbbell model 

The resultant external moment on a body equals the rate of 
change in the body’s angular momentum. If this moment is 
defined relative to the body’s COM, then the angular momen-
tum is known as the central angular momentum. If G denotes 
the body’s COM and GH  denotes the body’s central angular 
momentum, then GH&  denotes the rate of change in the 
body’s central angular momentum. A humanoid robot’s GH&  
can be used to maintain or improve the robot’s balance. If 

GH&  is zero, then overall rotational stability has been achieved. 
The ZRAM point is the point on the foot/ground surface 
where the total GRF would have to act such that the rate of 
change in angular momentum is zero [5]. When the humanoid 
robot is subjected to a resultant GRF acting at the COP, the 
COP is within the support polygon and the GRF passes 
through the COM. At this instant, the humanoid robot is rota-
tionally stable. However, when the GRF generates a net non-
zero moment about the COM, the humanoid robot tends to fall. 
If the GRF shifts parallel to the line passing through the COM, 
the point at which the rate of change of angular momentum 
reduces to zero and the humanoid robot becomes stable is 
defined by ZRAM. However, since ZRAM is a theoretical 
point that does not consider the kinematic constraints of a 
system, the PZMP, which does consider these constraints, is 
used in this paper.   

This section introduces the LIDM for the approximation of 
angular momentum. The equation of motion for the free dy-
namics of the LIDM in a central gravitational field describes 
the translational or rotational dynamics. The LIDM is as-
sumed to remain within a fixed orbital plane. It consists of two 
ideal masses connected by a linear rigid rod that is assumed to 
be massless. The dumbbell body can rotate and translate with-
in a plane. A gravitational force acts on each individual mass. 
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Though the LIDM is an exceedingly simple model, it is effec-
tive in demonstrating the complex dynamics and control phe-
nomena of the stability of a humanoid robot. The radial dis-
tance of the COM of the dumbbell from point P is denoted by 
r, and the distance of each mass particle from the COM of the 
dumbbell is l. ρ  denotes the angular position of the dumb-
bell COM and θ  denotes the attitude angle of the dumbbell 
axis with respect to the radial direction from point P to the 
dumbbell COM. The dumbbell is free to spin about its mid-
point. A pin can be used to lock the dumbbell into the position 
shown in Fig. 1.

 When the pin is withdrawn, the dumbbell is free to rotate 
about its midpoint, as shown in Fig. 2. The sum of the mo-
ments of all external forces must equal the change of angular 
momentum of the dumbbell. Since the dumbbell is symmetric, 
the COM is at the support point. The angular momentum of 
the dumbbell with respect to point P is  
 

2 2

1 1
( ) ( )

2 2p i i G i i G G G
i i

m mH r v r l v mr r H
= =

= × = + = × +∑ ∑ &   (1) 

 
where GH  is the angular momentum of the dumbbell with 
respect to the COM G. The parallel axis theorem gives 
 

2

1
( )

2G i G i
i

mH l lθ
=

= × ×∑ &   (2)  

 
where 2 2a bm m m= =  and Gθ&  is the angular velocity of the 
dumbbell. 
 

2

2 2G G G G
m mH l l l l mlθ θ θ= + =& & &   (3) 

 
If the pin is locked, then GH  is constant: 
 

2 2( )p G G oH r mr m l r ρ= × = + &&   (4) 
 
The rate of change in the angular momentum of the dumbbell 
with respect to point P is 
 

p G GH r mr= ×& &&   (5) 

z GOP R OG mg OG ma× + × = ×   (6) 
 
where [ , ,0]T

x yOP p p= , [ , , ]T
G G GOG x y z= , [0,0, ]Tg g= − , 

and zR  is the GRF. Let the x-component of the ZMP be xp . 
Then, 

 
( )x G G G G G Gmp z g mx g mz x mx z+ + = −&&&& &&   (7) 

( ) ( )x G G G G Gmp z g mz x mx z g+ = − +&&&& &&   (8) 

( )
G

G

z
x G Gz gp x x+∴ = −

&&
&&   (9) 

 
We assume 0Gz =&& . 
 

Gz
x G Ggp x x∴ = − &&  (10) 

 
The y-component of the ZMP can be found in a similar manner. 
If the pin is unlocked, then p G G GH H r mr= + × &   

o G GH H OG mr= + × &   (11) 

0 G GH H OG mr= + ×& & &&   (12) 
2( ) ( )x G G G G Gmp z g ml mx z g mxzθ+ = ± + + −&& &&&& &&   (13) 

2

( ) ( )
G

x G G G
G G

z lp x x
z g z g

θ∴ = − ±
+ +

&&&&
&& &&

  (14) 

 
We assume 0,Gz =&  0Gz =&&  
 

2
G

x G G G
z lp x x
g g

θ∴ = − ± &&&&   (15) 

 
The y-component of the ZMP can be found in a similar 

manner. When the ZMP lies outside the support polygon, the 
points on the ground surface at which the total GRF would 
have to act such that the rate of change in angular momentum 
is zero can be defined as the PZMP. 

The PZMP for the total angular momentum can be calcu-
lated using Eq. (15). The total angular momentum is the sum 
of the angular momenta about the COM and about the COP. 
The angular momentum is a conserved physical quantity for 
isolated systems in which no external moment acts on the 
COM. However, when the body is subjected to external per-
turbations, the conservation of the whole-body angular mo-
mentum cannot be guaranteed. In this case, the calculated 
ZMP does not represent the RZMP but a hypothetical point at 
which the ZMP would be if the support polygon was large 
enough to encompass it. As this is not the real case, the calcu-

r

l

Z
XO p

am

bm

Y  
 
Fig. 1. Linear inverted dumbbell model with zero GH& . 
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Fig. 2. Linear inverted dumbbell model with nonzero GH& . 
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lated ZMP is outside the support polygon and the point is 
called the PZMP; the PZMP represents the occurrence of a 
perturbation moment and the beginning of the rotation of the 
humanoid robot as a whole about the foot edge. The distance 
from the FEP to the PZMP is proportional to the intensity of 
the perturbation moment. The minimum distance from the 
FEP to the PZMP can be obtained from the Gauss’s principle, 
which minimizes the Gaussian of the total angular momentum. 
During the flight phase of running or jumping, angular mo-
mentum is perfectly conserved since the dominant external 
force is gravity acting at the body’s COM. However, during 
the support phase of walking, angular momentum is not nec-
essarily constant because the legs can exert forces on the 
ground that tends to accelerate the robot. Hence, the humanoid 
robot should modulate moments about the COM to control the 
change of angular momentum and whole-body angular excur-
sions. Consequently, the regulation of the angular momentum 
about the COM is critical for the stability of the humanoid 
robot. 
 

3. Comparison with other dynamic equilibrium criterions 

3.1 Zero-moment point/Center of pressure 

The notion of the ZMP for a humanoid robot has been 
known for more than 30 years, and the ZMP is a significant 
dynamic equilibrium criterion as long as gravitational forces 
govern the balancing of the gait. The overall balancing indica-
tor of humanoid robot behavior is the point at which the influ-
ence of all forces acting on the robot can be replaced by a 
single force. Vukobratovic [7] defined the ZMP as the point at 
which pressure under the supporting foot can be replaced by 
the GRF acting on the sole of the robot foot. The term “zero-
moment point” refers to the point at which the x- and y-
components of the moment replacing the active forces are 
zero, with only a nonzero vertical component being permitted.  

In the single-support phase in which only one foot is in con-
tact with the ground while the other is in a swing phase, the 
support polygon, that is, the area within the convex hull of the 
foot support area, is identical to the foot surface. In the double-
support phase in which two feet are in contact with the ground, 
the support polygon is defined by the foot surfaces and the 
distance between them. The COP represents the point on the 
support foot at which the resultant of the distributed GRFs acts. 
Alternatively, the field of pressure forces is equivalent to a 
single resultant force and it is exerted at the point at which the 
resultant moment is zero [8]. In general, the pressure between 
the robot foot sole and the ground can be replaced by the force 
acting at the COP on the humanoid robot during gait. If the 
humanoid robot has a dynamically balanced gait, the COP and 
ZMP on the foot surface are identical. However, the ZMP has 
a more specific meaning than the COP does in evaluating the 
dynamics of the gait equilibrium. To illustrate the specific 
difference between the ZMP and COP, if the ZMP lies on the 
edge of the support polygon, the trajectory may not be dy-

namically feasible. The perturbation moment causes rotation 
of the complete humanoid robot about the edge point. In spite 
of the COP and ZMP coinciding on the edge of the support 
polygon, a humanoid robot rotating about a foot edge becomes 
unstable and falls. When the ZMP lies outside the support 
polygon under a more critical perturbation, the RZMP does 
not exist. Otherwise, the COP exists at the foot edge point on 
the support foot at which the resultant of distributed GRFs acts. 
Consequently, in this unbalanced situation, the ZMP does not 
coincide with the COP. The ZMP being outside the support 
polygon indicates an unbalanced gait and does not represent a 
physical point related to the sole of the robot foot. The point 
outside the support polygon is defined as the PZMP in section 
2. The distance of the PZMP from the foot edge provides a 
measure of the unbalanced moment that tends to rotate the 
humanoid robot around the supporting foot and causes it to 
fall. The measure depends on the intensity of the perturbation 
moment limited by the kinematic constraint of a dumbbell. To 
avoid overturning, rapid rebalancing by changing the dynamic 
forces acting on the body is required.  

 
3.2 Foot rotation indicator  

The FRI point, which is a point on the foot/ground contact 
surface within or outside the support polygon, is where the net 
GRF would have to act to maintain a zero-moment condition 
about the foot [4]. Foot rotation in a humanoid robot during 
the single-support phase is an indication of postural stability. 
The rotational dynamic equilibrium of the foot is therefore an 
important criterion for the control strategy of postural stability 
in a humanoid robot. The external forces that cause foot rota-
tion are the resultant ground force, moment at the COP, and 
gravity. Hence, the rotational dynamic equilibrium can be 
obtained by the summation of external moments acting on the 
humanoid robot. The FRI point is applicable only during the 
single-support phase of the humanoid robot. To ensure no foot 
rotation, the FRI point must remain within the convex hull of the 
foot support area. This condition is identical to the definition of 
the RZMP. However, the RZMP may not lie outside the support 
polygon, whereas the FRI point does so whenever there is an 
unbalanced torque on the foot. Thus, the FRI point indicates the 
stability margin of the humanoid robot during the single-
support phase. As stated above, however, this distance is 
equivalent to the definition of the PZMP, which provides a 
measure of the unbalanced moment that tends to rotate the 
humanoid robot around the supporting foot and causes it to 
fall. In addition, the PZMP is applicable for any phase of the 
humanoid robot and is therefore a more practical considera-
tion than the FRI point for balancing the robot.  

In the top fig 3(a), the foot is in static equilibrium since 
RZMP is coincident with FRI. However, when the foot is 
starting to rotate in the top fig 3(b), FRI is outside the support 
polygon but RZMP is at the tip about which the foot rotates. 
In the bottom fig 3(c), if the foot does not rotate under external 
perturbation, both PZMP and FRI is outside the support poly-
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gon and PZMP is coincide with FRI. Otherwise, if the foot 
rotates under external perturbation, both PZMP and FRI is 
outside but PZMP is not coincident with FRI shown as the fig 
3(d). 

 
3.3 Centroidal moment pivot 

The centroidal moment pivot (CMP) is the point at which 
the GRF would have to act to keep the horizontal component 
of the whole-body angular momentum constant [9]. The CMP 
is defined as the point at which a line parallel to the GRF and 
passing through the COM intersects with the ground surface. 
When the moment about the COM is zero, the CMP coincides 
with the ZMP. When the CMP and the ZMP do not coincide, 
there exists a nonzero body moment about the COM. While 
the ZMP cannot lie outside the support polygon, the CMP can, 
but only in the presence of a significant moment about the 
COM. The CMP, applicable for both single- and double-
support phases, provides information about the whole-body 
rotational dynamics when supplemented with the ZMP loca-
tion. When the humanoid robot loses rotational equilibrium, it 
does not necessarily mean that it will fall. However, Goswami 
and Kallen (2004) [5] called the specified quantity the ZRAM 
point. The CMP is thus equivalent to the ZRAM.   

A control strategy that minimizes the CMP–ZMP separation 
would only ensure a constant whole-body angular momentum 
and not necessarily zero angular momentum. The CMP can be 
expressed mathematically by requiring that the cross-product 
of the CMP–COM position vector and the GRF vector vanish 
[10]. That is, 

[( ) ] 0CMP COM horizontalr r F
→ → →

− × =   (16) 
 
The location of the CMP can be written in terms of the loca-
tion of the COM and the GRF as 
 

x
CMP COM COM

z

y
CMP COM COM

z

Fx x z
F
F

y y z
F

= −

= −
   (17) 

 
where ,xF mx= &&  yF my= && , and ( )z GF m z g= +&&  

Eq. (17) is the same as Eq. (10) of the RZMP and does not 
show us the practical measurement to prevent falling down 
when the RZMP lies outside the support polygon. On the other 
hand, the PZMP shows how to measure the essential range for 
the stability of the humanoid robot under external perturbation. 
 

4. Receding horizon viability radius  

4.1 Fundamental equation by Gauss’s principle  

The Gauss’s principle is a basic axiom of physics in a man-
ner similar to Newton’s laws of motion. It describes how 
masses move under the influence of forces and how to take 
geometric motion constraints into account. The Gauss’s prin-
ciple, established by Gauss [12], expresses an extreme prop-
erty of the real motion of a system in the class of admissible 
motions, corresponding to the ideal constraints imposed on the 
system and to the conditions of constancy of position and 
velocities of the points in the system at a given instant. Sup-
pose that the Cartesian coordinates and velocities of a system 
are given at time t. Then, we can write 
 

2

1

1( ) ( )
2

N
i

i i
i i

FG x m x
m=

= −∑&& &&   (18) 

 
( )G x&&  is a function of the set of accelerations ix&& . The Gauss’s 

principle states the actual acceleration corresponds to the min-
imum value of ( )G x&& . If the system is not constrained, then 

( )G x&& is zero and the system evolves under Newton’s equation . 
The Gauss’s principle states that the trajectories actually fol-
lowed are those that deviate as little as possible, in a least 
squares sense, from the unconstrained Newtonian trajectories. 
The projection that the system actually follows is one that mi-
nimizes the magnitude of the constraint force. This implies that 
the constraining force must be parallel to the normal of the 
constraint surface. This is Gauss’s principle of least constraint. 
The postural stability of a humanoid robot subjected to a strong 
external perturbation is related to the whole-body angular mo-
mentum. Hence, the Gauss’s principle provides important in-
formation about the postural stability of a humanoid robot sub-
jected to a strong external perturbation in predicting the whole-
body angular momentum. The Gauss’s principle gives a clear 
description of the general nature of constrained motion in terms 
of the minimization of a function of the acceleration of a sys-
tem [11-13]. The Gauss’s principle in terms of generalized 

RZMP COP FRI= = COP FRI

Support Polygon

(1) RZMP COP
COP FRI

=
=

(2) RZMP COP
COP FRI

=
≠

( 0)aτ = ( 0)aτ ≠

COP FRI= CMP ZRAM= COP CMP ZRAM=FRIPZMP PZMP

( 0)aτ ≠( 0)aτ =

 
 (3) CMP ZRAM PZMP=  (4) CMP ZRAM PZMP=  

or PZMP≠               or PZMP≠  
     COP FRI               COP FRI≠  

 
Fig. 3. Dynamic equilibrium criterions. 
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coordinates is given by 
 

( ) [ ( )] ( , )[ ( )].TG q q a t M q t q a t= − −&& && &&   (19)  
 
where the matrix M is an s × s symmetric positive definite 
matrix and the vector ( )a t corresponds to the acceleration at 
time t of the unconstrained system. q&& is the actual acceleration 
vector of the constrained system. The fundamental equation is 
proved in generalized coordinates. The equation for the uncon-
strained system is known to always be in the form 
 

( , ) ( ) ( , , ).M q t a t F q q t= &   (20) 
 
Here, the generalized force F is the given impressed force 
acting on the system. The equation of constraint is defined as 
 

( , , ) ( , . ),A q q t q b q q t=& && &   (21) 
 
The vector q is an s-generalized coordinate 1 2, sq q qL  since 
they are independent. If the holonomic constraints v and the non-
holonomic constraints u are characterized by the system, there are 
a total of w v u= + equations. The matrix A is a w × s matrix, 
where 1i w= L  is the constraint number.   

If A is a square nonsingular matrix, then the usual inverse of A, 
1A− , satisfies all four of the MP conditions (Appendix A). 
If A is a positive definite matrix and w s= , it can be ex-

pressed as 
 

1 1
2 2 TA W W= Λ , 

1 1
2 2 TA WA W

− −
=   (22) 

AW W= Λ , TW W I= ,  
 
where W is an orthogonal matrix and Λ  is a diagonal matrix. 
In the absence of constraint Eq. (21), the acceleration 

( ) ( )q t a t=&& of the unconstrained system is given by Eq. (20). 
 

1( ) ( , ) ( , , )a t M q t F q q t−= &   (23)  
 
In general, the matrix A has rank r w≤ , where r  is the 
number of row vectors. Additionally, the w  constraint equa-
tions need not be independent. The acceleration ( )q t&&  of the 
constraint equation at each instant t  must satisfy Eq. (21). 
For clarity, the arguments of various matrices and vectors are 
suppressed, and the matrix M is assumed to be positive defi-
nite. Vector r&& is defined as 
 

1
2( ) ( , ) ( ).r t M q t q t=&& &&    (24)   

Eq. (24) can be substituted into the constraint Eq. (21). The 
acceleration of the constrained system then satisfies Eq. (25). 
 

1
2( , ) ( , ) ( ) ( , , ).A q t M q t r t b q q t

−
=&& &   (25)  

 
1 2B AM −=  is defined as a constraint matrix, where B  is a 

w × s matrix. 
 

( , ) ( ) ( , , )B q t r t b q q t=&& &   (26) 

The general solution to the constraint equation AX b= can be 
expressed by 
 

( )X A b I A A h+ += + −   (27)  
 
where A is an m × n matrix and h  is any n × 1 vector. (Ap-
pendix B). In the same sense, the general solution to Eq. (26) is 
simple. 
 

( ) ( )r t B b I B B h+ += + −&&   (28) 
 
Here, B+  is the s × w Moore–Penrose inverse of matrix B, 
and h is an arbitrary n × 1 vector. Eq. (28) can be rewritten as 
 

( )r t B b Rh+= +&&  , ( )where R I B B+= −   (29) 
 
The vector Rh  needs to be defined in accordance with the 
Gauss’s principle in analytical mechanics. The acceleration of 
the constrained system must satisfy the constraint equation at 
time t. Among the accelerations, the Gauss’s principle mini-
mizes the constraint that deviates from the acceleration of the 
constrained system, such as ( ) ( ) ( )q t q t a t∆ = −&& && . The quantity 

( )G q&&  is the square of the length of the vector ( )q t∆&&  nor-
malized with respect to the matrix M. If minimized, ( )G q&&  is 
given by 
 

1 1 1 1
2 2 2 2

1 1
2 2

( ) ( ) ( )

( ) ( )

( ) ( ).

T

T

T

G q q a M q a

M q M a M q M a

r M a r M a

= − −

= − −

= − −

&& && &&

&& &&

&& &&

  (30) 

 
Substituting Eq. (28) into Eq. (30), vector h  needs to be 
found such that Eq. (31) is minimized. 
 

1 1
2 2( ) ( ( )) ( ( )).TG h Rh M a B b Rh M a B b+ += − − − −   (31)  

 
Hence, if matrix A is m × n and b is an m × 1 vector, an n × 1 
vector X is minimized by 
 

2( ) ( ) ( ).TK x AX b AX b AX b= − = − −   (32) 
 
given that ( )X A b I A A h+ += + − .  
Therefore, h is obtained to minimize ( )G h : 
 

1
2( ) ( ) .h R M a B b I R R K+ + += − + −   (33) 

 
where K is an arbitrary n × 1 vector. Since ( )R I B B+= −  is 
defined, R is obtained from ,RR R R R+= = , to give  
 

1
2( ) ( ) .h R M a B b I R K+ += − + −   (34)  

 
Multiplying both sides by R gives 
 

1
2

1
2

( ) ( )

( ) ( )

Rh RR M a B b R I R K

RR M a B b R RR K

+ +

+

= − + −

= − + −

  (35)  
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1
2( ).R M a B b+= −  

 
Eq. (35) is substituted into Eq. (29) to give 
 

1
2

1
2

1 1
2 2

1 1
2 2

( ) ( )

( )( )

( )

( ) ( ).

r t B b R M a B b

B b I B B M a B b

M a B b BM a

M a AM b Aa

+ +

+ + +

+

− +

= + −

= + − −

= + −

= + −

&&

  (36) 

 
The total acceleration of the constrained system is given by  
 

1 1
2 2( ) ( ) ( )q t a M AM b Aa

− − += + −&&   (37) 
 
Both sides of Eq. (37) can be multiplied by M to obtain 
 

1 1
2 2( ) ( ) ( )

( ) ( ).c

Mq t Ma M AM b Aa
F t F t

− += + −

= +

&&    (38)  

 
The unconstrained equation is ( ) ( )Ma t F t=  and the con-
strained equation is 
 

1 1
2 2( ) ( ) ( )cF t M AM b Aa

− += −   (39) 
 
The actual acceleration of the constrained system is that given 
by Eq. (37). 
 
4.2 Equation of motion for LIDM 

The kinetic and potential energies of the inverted dumbbell 
system shown in Fig. 4 in terms of the independent coordi-
nates ,r ρ , and θ are 

 
2 2 2 2( )

2 2
m mT r lρ ρ θ= + + && &   (40) 

(sin 1)V mgr ρ= −   (41)  

2 2 2 2 2 2( ( ) ) (sin 1)
2
mL r r l l mgrρ ρ θ ρ= + + + − − −& && &&   (42) 

The equation of motion about the unconstrained system is 
 

2 2 2

2 2

sin

FM

mgrml mr ml
ml ml

ρ

θ

ρ τρ
τθ

+⎡ ⎤ ⎡ ⎤+ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

&&

&&
1442443144424443

  (43) 

 
If the force is given in terms of rectangular components, the 
generalized force components are 
 

2

1

i
s i

i i

uF F
q=

∂
=

∂∑  1,2s =  

x y z

x y z

x y zF F F

x y zF F F

ρ

θ

τ
ρ ρ ρ

τ
θ θ θ

∂ ∂ ∂
= + +

∂ ∂ ∂
∂ ∂ ∂

= + +
∂ ∂ ∂

   (44) 

 
4.2.1 Impulse–momentum relationships 

Generally, strong external perturbation acting on a human-
oid robot is assumed to be a force that tends to infinity at an 
isolated instant such that its time integral remains bounded. 
Physically, an impulsive force is a very large force that acts 
over a very short time period. Therefore, a strong external 
perturbation is considered as an impulsive force. Since the 
mass m of the robot is constant, the linear momentum L of the 
mass system is mx& . The equation of motion according to 
Newton’s generalized second law is 
 

mx F=∑&&   (45) 
 
Integrating Eq. (45) gives 
 

1

0

1 0( ( ) ( ))

lim ( , , )
ii

t

t

t

Ltt t

m x t x t Fdt

F x x t dt p
→

− =

∴ =

∑∫

∫

& &

&

  (46) 

 
Eq. (46) states that the linear impulse on the body during the 
interval t2-t1 equals the corresponding change in the linear 
momentum. Similarly, the angular impulse is the time integral 
of the torque applied to a system, usually for a short time. It is 
equal to the change of angular momentum that it would cause 
on a free mass acting about a principal axis. Specifically, the 
angular impulse represents the effect of a moment of force 
acting on a system at a distance from the COM. The angular 
impulse about the mass center for all forces acting on the body 
during the interval t2-t1 equals the corresponding change in the 
angular momentum about the COM.  
 

2 2

1 1

2 1( )
t t

G G G G G
t t

p M dt H dt H H Hθ = = = − = ∆∫ ∫ &   (47) 

 
Eq. (47) is particularly useful when dealing with impulse 
forces. In such cases, it is often possible to calculate the inte-
grated effect of a force on a particle without knowing in detail 

am

bm

l

rZ

XO
Y

ρ

θ
θτ

ρτ

 
 
Fig. 4. Dynamic dumbbell system. 
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the actual value of the force as a function of time. The angular 
momentum of a system of particles about a fixed point is the 
sum of the angular momentum of the individual particles. 
From the LIDM, the angular momentum about the COM is 
given by Eq. (3):  
 

2 2 2( ) ( ) ( )
2 2G G G G
m mH l l mlρ θ ρ θ ρ θ= − − − − = − −& & && & &   (48) 

 
Substituting into Eq. (47) gives 
 

2

2 1

1

2 2
2 2 1 1( ) ( ) ( )

t t

t

G G G G G
t

M dt H H ml mlρ θ ρ θ= − = − − + −∫ & && & (49) 

 
The time variation in GH  for impact problems about the 
COM G during the interval t2-t1 can be written as 
 

( ) ( )
t

G
t

p t p t M dt
τ

θ θτ
+

+ − = ∫    (50) 

2

2 1

1

2 2
2 1( ) ( )

t t

t

t G t G G
t

ml ml M dtρ θ ρ θ− − + − = ∫& && &   (51) 

 
Differentiating Eq. (51) with respect to time gives 
 

2

2 1

1

2 2 '
2 1( ) ( ) ( )

t t

t

t G t G G
t

ml ml M dtρ θ ρ θ− − + − = ∫&& &&&& &&   (52) 

The Hamiltonian function for a natural system that is holo-
nomic and conservative is  
 

3

1
r r r

r
H p q L p r p p Lρ θρ θ

=

= − = + + −∑ &&& &   (53) 

 
Consequently, Hamilton’s equation for θ , which denotes the 
attitude angle of the dumbbell axis with respect to the radial 
direction from point P to the dumbbell COM, is 

2

1

'( ) 0
t

G
t

HM dt pθ θ
∂

= = − =
∂∫ &   (54) 

 
Substituting Eq. (54) into Eq. (52) gives 
 

2 1 2 1t tG G t tθ θ ρ ρ∴ = + −&& && && &&   (55) 
 

4.2.2 Constraint equation 

The constraint equation is then considered. The basic form 
of the constraint equations is ( , ) ( , . )A q t q b q q t=&& & . The con-
straint equation of motion described at each instant is ex-
pressed as follows.  
 

2 2
1

2 2
2

2 cos

2 cos

r l rl C

r l rl C

θ

θ

+ + =

+ − =
  (56)  

2 2

2 2

( cos ) sin 2 sin cos 0
( cos ) sin 2 sin cos 0
r l r rl r l rl r
r l r rl r l rl r

θ θθ θ θ θ θ

θ θθ θ θ θ θ

+ − − − + =

− + + + + =

&& & &&& & &

&& & &&& & &  (57) 

2 2

2 2

( cos ) sin
( cos ) sin

2 sin cos
2 sin cos

A

b

r l rl
r l rl

r l rl r
r l rl r

θ θ ρ
θ θ θ

θ θ θ θ
θ θ θ θ

+ −⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

⎡ ⎤+ −
⎢ ⎥
− − −⎣ ⎦

&&

&&
14444244443

& && &

& && &
1444442444443

  (58) 

 
Thus, the motion of the constrained system is described by the 
equation  
 

( , ) ( , , ) ( , , )CM q t q F q q t F q q t= +&& & &   (59) 
 
where ( , , )F q q t&  is the unconstrained force and ( , , )CF q q t& , 
the constrained force. Assuming that the configuration 

( )q t and the velocities ( )q t& of the constrained system are 
known and both ( )q t  and ( )q t&  are continuous at time t, the 
goal is to obtain the generalized acceleration of the constrained 
system. Of all the possible generalized acceleration vectors 

( )q t&&  that satisfy the constrained system at time t, the one that 
minimizes the Gaussian ( )G x&&  is given by  
 

2

1

1( ) ( ) ( ) ( )
2

N
Ti

i
i i

FG x m q q a M q a
m=

= − = − −∑&& && && &&    (60) 

 
The determination of the second term in Eq. (59) is dictated by 
the Gauss’s principle. The principle states that at each time t, 
the acceleration of the constrained system must be such that 
while satisfying the constraint equation at that instant, it mi-
nimizes the Gaussian G.  

 
4.2.3 Actual angular acceleration and RHVR 

The Gaussian of the angular acceleration of the COM for an 
angular impulse is 

2 2 1

2

1

1( ) ( )
2 i i

N
i

t i t t
i i

FG q m q q
m=

= − −∑&& && &&   (61) 

2
( ) [ ] ( , )[ ]T

tG q q a M q t q a= − −&& && &&
  

(62) 

where 2 1 2 1 2 1

1

,
i i

T

t t t t t tq q q

a M F

ρ ρ θ θ
−

⎡ ⎤= − = − −⎣ ⎦
=

&& &&&& &&&& && &&  

 
2t

q&&  is the acceleration matrix after the impulse at time t2; 1t
q&& , 

the acceleration matrix before the impulse at time t1; Finally, 
the actual acceleration after the impulsive force at any point in 
the LIDM can be written as 
 

2 1

1 1( ) ( )T T
t tq q a M A AM A b Aa− − +− = + −&& &&   (63) 

 
Consequently, after the impulsive force, the ZMP considered 
for the actual angular acceleration 

2t
θ&&  of the generalized 

coordinate θ  component from Eq. (63) is 
 

2

2

2
tG

x G G t

z lp x x
g g

θ∴ = − − &&&&    (64) 
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Fig. 5 shows that the RHVR about the RZMP is 
 

r
xpε ε− +≤ ≤ .  (65) 

 
ε −

 is the minimum RZMP and ε + , the maximum RZMP 
from the center of the ankle. The RHVR about the PZMP is  
 

p
xpδ δ− +≤ ≤   (66) 

 
δ −

 is the minimum PZMP and δ + , the maximum PZMP. A 
measure of the unbalanced moment that tends to rotate the 
humanoid robot around the support foot and cause it to fall is 
obtained by the distance from ε −

 to δ −  or from ε +
 toδ + . 

It must be compensated by the angular momentum of the 
dumbbell until limit constraints, since the distance is a meas-
ure of the instability of the humanoid robot. 

The RHVR about the SPZMP is  
 

sRσ σ− +≤ ≤   (67) 
 
where σ −

 is the minimum SPZMP and σ +
, the maximum 

SPZMP. The distance from σ −  to σ +
 within the maximum 

kinematics of the workspace of the swinging leg beyond the 
joint limits is defined as the maximum viability radius for 
stepping. The location of the swinging leg for balanced step-
ping must be the region between σ −  and σ + .  
 

5. RHVR control strategies 

This section explains how the humanoid robot can maintain 
or improve its balance in three cases. In the theoretical case, 
when the rate of change in the angular momentum about the 
COM is zero under external perturbation, the humanoid robot 
can prevent falling. However, because this is practically infea-
sible, the main issue for the stability of the humanoid robot 
under external perturbation is to greatly minimize the rate of 
change in the angular momentum about the COM at an instant. 
Assuming a small perturbation, the first case uses the RZMP 
balancing strategy. As the perturbation increases, the second 
case uses the PZMP balancing strategy to minimize the rate of 
change in the angular momentum about the COM. For ex-
tremely strong external perturbations, the humanoid robot 
steps within the RHVR about the SPZMP using both the 
PZMP balancing strategy and tracking control for a new tra-
jectory. 

 
5.1 Case 1: RZMP balancing control 

Assuming that the humanoid robot experiences a small per-
turbation, a RZMP balancing strategy is employed. In the 
LIPM, a point mass connected to a swinging leg attached to 
the swinging foot is maintained at a constant height and is 
supported by a stance foot. The effects of rotational inertia and 
behavior of the upper body are not considered because the 
upper body is approximated as a point mass at a location cor-
responding to a hip. Hence, control parameters are limited at 
the joint level.  

In the RHVR about the RZMP, the range of the stability is 
also limited as the distance of the backward, ε − , or for-
ward, ε + , edge of the foot.  

Thus,  
 

r
xpε ε− +< <   (68) 

G G
G G G

z zx x x
g g

ε ε− +∴ − < < +&& &&   (69) 

 
The inequality (69) is the constraint of the COM about the 

RZMP. The linear dynamics of the LIPM from Eq. (10) can 
be written as 
 

2

2

( )r
G G x

G r

x x p

x x f

ω

ω

= −

− =

&&

&&
  (70) 

 

where 
G

g
z

ω =  and r
r x

G

gf p
z

= − . 

The solution of the differential Eq. (70) can be written as  
 

0
02 2( ) ( )cosh( ) sinh( )r r

G
f x fx t x t tω ω
ω ω ω

= + + −
&   (71) 

σ − δ − ε + δ + σ +ε −

Y

XX−

 
 
Fig. 5. Ranges of RHVR. 
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Fig. 6. RHVR of RZMP. 
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5.2 Case 2: PZMP balancing control 

As the perturbation increases, both the RZMP and PZMP 
balancing are used to minimize the rate of change in the angu-
lar momentum about the COM. In the LIDM, the maximum 
angular acceleration is the total sum of both the angular accel-
eration at the ankle point and that of the dumbbell. As com-
pared to the LIPM, the point mass is replaced by a dumbbell 
to explicitly model the angular momentum about the COM. 
The additional angular acceleration term due to the momen-
tum-generating dumbbell allows for a greater force. The 
dumbbell represents the inertia of the upper body and the 
swinging leg and should be subject to joint limit constraints. 
Thus,  
 

p
xpδ δ− +< <   (72) 

2 2

2 2
G G

G t G G t
z l z lx x x
g g g g

δ θ δ θ− +− − < < + +&& &&&& &&   (73) 

 
The inequality (73) is the constraint of the COM about the 
PZMP. 

This inequality represents the decision range of the PZMP. 
From Eq. (15), the linear dynamics of the LIDM can be writ-
ten as 
 

2

2
2 2 ( )p

G G x t
lx x p
g

ω ω θ− = − + &&&&   (74) 

 

where 
G

g
z

ω =  and 
2

2
2 ( )p

p x t
lf p
g

ω θ= − + && . 

 

0
02 2( ) ( )cosh( ) sinh( )p p

G

f fxx t x t tω ω
ω ω ω

= + + −
&   (75) 

It appears that a minimum time control input profile can be 
applied for the COM angular acceleration. The COM angular 
acceleration profile, defined as a bang-bang trajectory, is used 
to generate analytical solutions. 

The bang-bang function ( )ref tθ&&  applies the maximum 
COM angular acceleration for a period 1T  followed by a 
maximum negative COM angular acceleration for a period 2T , 
and finally a zero angular acceleration. The function can be 
written as 
 

max max 1 max 2

0 max max 1 max 2

( ) ( ) 2 ( ) ( )

( ) ( ) 2 ( ) ( )
ref

ref

t u t u t T u t T

t u t u t T u t T

θ θ θ θ

θ θ θ θ θ

= + − − −

= + + − − −

&& && && &&

& & && && &&& & &
  (76) 

 
where maxθ&&  is the maximum angular acceleration profile until 
it is physically possible for the hip joint to be used and 

( )u t T−  is a unit step function at time t T= . ( )ref tθ&&  is the 
reference angular acceleration about the dumbbell, which can 
cope with the COM angular acceleration generated by the 
external force. Assuming that 2( )ref fTθ θ=& &

 and 
22( )

tref GTθ θ= , 
solving Eq. (76) gives 
 

1 2 0
max

1 1 ( )
2 2 fT T θ θ

θ
= + −& &

&&
  (77) 

 
Substituting Eq. (77) into Eq. (76), we obtain 
 

2

2 2max
2 0 2 0 0

max

1 1( ) ( ( ) ( ( ) ) 0
4 2 4tf G fT Tθ θ θ θ θ θ θ

θ
+ + + − − + =

&&
& & & &

&&
 (78) 

 
Assuming 0 0fθ θ= =& &  and noting that 2 12T T= , we obtain 

 

22 0
max

12 ( )
tGT θ θ

θ
∴ = −

&&
   (79) 

 
The goal of the dumbbell controller is to minimize the rate 

of change in the angular momentum of the COM instantane-
ously without exceeding the joint limit constraints. The in-
crease in the region of stability margin in the PZMP is given 
by 
 

2
maxl

g
θ δ ε+ += −
&&

   (80) 

 
The dumbbell will be controlled by methods that minimize the 
actual COM angular acceleration 2tθ&&  to move from the 
PZMP to the RZMP. The constraint of the PZMP can be re-
written as  
 

2 2
max max

2 2
G G

G
x l x lx

g g
θ θδ δ

ω ω
− +− − < < + +

&& &&&& &&   (81) 

 
where max 0θ ≠&& .  

Initially, there is a large backward angular acceleration at 
the dumbbell, and then, the angular acceleration is instantly 
reversed. The PZMP returns to the range of the RZMP. 
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σ +
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σ −
  

σ − σ +

Y

XX−
ε + δ +ε −δ −

 
 
Fig. 7. RHVR of PZMP. 
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5.3 Case 3: Step balancing control 

When the PZMP goes lies outside the RHVR about the 
PZMP, the next step of the humanoid robot will be within the 
RHVR about the SPZMP. The dumbbell angular momentum 
after the external perturbation can be used to predict the hori-
zontal components of the COM from a known ZMP trajectory. 
Given the ability to predict horizontal components of the 
COM, new reference trajectories can be generated. With spe-
cifications of walking speed and direction, the humanoid robot 
generates a desired gait length and period, taking into account 
its own morphology. Assuming that the strong perturbation 
can be replaced by an impulse force, resulting in an instanta-
neous change in the COM angular acceleration, the LIDM is 
very useful for predicting the resulting time evolution of the 
COM. The LIDM can be sufficiently complete to predict how 
the COM trajectories might change and to accurately deter-
mine motions for planning corrective actions that may be nec-
essary. The RHVR for the next step location can be written by 
 

2 2
2 2

s
x

G t G t
G G G

p

z l z lx x x
g g g g

σ σ

θ θσ σ

− +

− +

< <

− − < < + +
&& &&

&& &&
  (82) 

 
where 2 maxtθ θ≥&& && . 

The constraint gives the region of viability for the humanoid 
robot stepping when the angular acceleration of the COM 
exceeds maxθ&& . When there is an external perturbation, the vi-
ability control system of the humanoid robot must fundamen-
tally change to a new control mode because the angular mo-
mentum of the COM must be minimized, and the swinging 
leg is located in the future step. The new control mode must 
minimize the additional angular momentum of the COM and 
track the redefined trajectory for the future step. If the RZMP 
lies outside the support polygon, the system must know that it 
will have to switch control modes instantaneously before the 
PZMP is located in the RHVR about the SPZMP. Thus, the 
system has sufficient time to switch control modes and it 
should compensate the changing angular acceleration of the 
COM and initiate a step for balance before the robot falls. The 
system controller then tracks the new trajectory of the swing- 

ing leg and trunk the instant the actual angular momentum 
about the COM is minimized. Given the limitations of compu-
tational capacity, real-time trajectory planning in a joint space 
appears infeasible using optimization strategies with moder-
ately long future time horizons. However, we expect the prob-
lem to be solved by the method of receding horizon control. 
 

6. Conclusions  

The contributiveness of this paper first starts from the con-
cept that the rate of change of angular momentum generated 
from the center of mass is an important parameter of keeping 
the balance of robot, and the humanoid robot will not fall 
down as long as the momentum is maintained as zero. How-
ever, it is difficult to measure this momentum with sensor in 
the actual robot where external perturbation is working, and 
even more difficult to make it into zero. In this paper, the solu-
tion of inducing relatively exact momentum is suggested using 
Gauss’s principle. The rate of change of angular momentum 
generated in COM actually is predictive. Second, stable areas 
were divided into 3 stages by the strength of external perturba-
tion in order to avoid robot’s fall, and such sections were de-
fined with RHVR of each stage. The RHVR defined in each 
stage signifies the optimal radius of action for avoiding robot’s 
fall. This becomes an important criterion of proposing a solu-
tion to act upon each stage differently so that the robot may 
not actually fall down by external perturbation. The range 
definition of each stage is considered to be a method for ap-
plying realistically. We consider stability strategies for three 
cases. When there is a small disturbance, the RZMP balancing 
strategy is used. As the perturbation increases, the PZMP bal-
ancing strategy is used. The way of compensating added 
amount was suggested using LIDM, so that the virtual ZMP 
location, which is infeasible in practice, can be returned to the 
actual ZMP location. Finally, when there is a strong perturba-
tion which is hard to be compensated by dumbbell, the range 
of robot’s step is defined, considering the mechanical limita-
tion, both the PZMP balancing for minimizing the rate of 
change in the angular momentum about the COM and new 
trajectories of the swinging leg and trunk are applied for the 
SPZMP. Naturally, the new trajectory should be calculated 
from the desired parameters of the swinging leg within the 
region of the RHVR about the SPZMP. Through this, the 
maximum range to avoid robot’s fall was suggested.  This 
paper does not describe how to control this in detail. Our next 
work will address various control issues.  
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Appendix 

A.  

The Moore–Penrose Generalized Inverse is a general me-
thod to find the solution to the following system of linear equ-
ations 

 
AX b= , ; ;m n m nb X A ×∈ ∈ ∈  

 
If the matrix A+ satisfies all the following four conditions, 

the MP inverse of A is the unique matrix. 
 
1.
2.
3. ( )
4. ( )

T

T

AA A A
A AA A
AA AA
A A A A

+

+ + +

+ +

+ +

=

=

=

=

 

 
If A is an m n×  matrix,  

1. 1,m n A A+ −= =  if A is full rank. 
2. m n> , the solution is the one that minimizes the 

quantity b AX− . 
3. m n< , there are infinite solutions and the MP solu-

tion is the one whose vector 2-norm is minimal. 
 

B. 

The general solution to the consistent equation AX b= , 
where A is an m × n matrix 
 

( )X A b I A A h+ += + − , 
 
where h is an n × 1 vector 

If an m n×  matrix A has rank n,  
( ) ( )T T T TA A AA A A A+ + += =  

1 `( )T TA A A A+ −=  
1( ) ( )T TA A AA− +=  

1( )T TAA A A A A I+ −= =  
0I AA+∴ − =  
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